問題


南山中学校女子部2019年第2問




 1/2+1/4=3/4、1/2+1/4+1/8=7/8、1/2+1/4+1/8+1/16=15/16です。
 このとき、1+1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512+1/1024を計算しなさい。


解答・解説


(解法1)
問題文のヒントを利用して、規則性の問題として解きます。
最初に与えられた3つの式(さらに、1/2=1/2を加えてもいいでしょう)から、1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512+1/1024の計算結果が1から最後の数を引いたものであることが読み取れますね。
したがって、
  与えられた式
 =1+1−1/1024
 =1・1023/1024(1と1023/1024のことです)
となります。
(解法2)
等比数列の和の求め方を利用して解きます。
 @=  1+1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512+1/1024
とすると、
 A=2+1+1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512 ←上の式のそれぞれの数を2倍して左にずらしてかきました。
となります。
その差の@は2−1/1024となります(以下略)。
なお、等比数列の和の求め方については、、灘中学校19992年算数2日目第1問の解答・解説を参照しましょう。


中学受験・算数の森TOPページへ